This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Home » An Experiment Concerning the Effectiveness of a Structural Drying Approach
On June 28-July 1, a private IICRC-approved Applied Structural Drying (ASD) class was held in Springfield, Ohio, for consultants from YOUNG & Associates’ Environmental Team. The class was led and instructed by the authors of this article. During the class, the ambient and surface temperatures were managed throughout the flooded environment. Additionally, during the class a pilot study was conducted in one drying chamber to test the theory put forth in the ANSI/IICRC S500-2015 Standard and Reference Guide for Professional Water Damage Restoration (ANSI/IICRC S500-2015) Section 13.5.6.3, “Controlling Temperature to Accelerate Evaporation.”
The study was conducted at an IICRC-approved ASD training house. This was the 65th time this flood house had been flooded with approximately 1,500 gallons of water and dried. The gypsum board used in this test was new material not subject to previous flooding. The water remained for more than 24 hours prior to the start of mitigation.